Learn to Compress CSI and Allocate Resources in Vehicular Networks

12 Aug 2019  ·  Liang Wang, Hao Ye, Le Liang, Geoffrey Ye Li ·

Resource allocation has a direct and profound impact on the performance of vehicle-to-everything (V2X) networks. In this paper, we develop a hybrid architecture consisting of centralized decision making and distributed resource sharing (the C-Decision scheme) to maximize the long-term sum rate of all vehicles. To reduce the network signaling overhead, each vehicle uses a deep neural network to compress its observed information that is thereafter fed back to the centralized decision making unit. The centralized decision unit employs a deep Q-network to allocate resources and then sends the decision results to all vehicles. We further adopt a quantization layer for each vehicle that learns to quantize the continuous feedback. In addition, we devise a mechanism to balance the transmission of vehicle-to-vehicle (V2V) links and vehicle-to-infrastructure (V2I) links. To further facilitate distributed spectrum sharing, we also propose a distributed decision making and spectrum sharing architecture (the D-Decision scheme) for each V2V link. Through extensive simulation results, we demonstrate that the proposed C-Decision and D-Decision schemes can both achieve near-optimal performance and are robust to feedback interval variations, input noise, and feedback noise.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here