Learnability of Learned Neural Networks

ICLR 2018 Rahul Anand SharmaNavin GoyalMonojit ChoudhuryPraneeth Netrapalli

This paper explores the simplicity of learned neural networks under various settings: learned on real vs random data, varying size/architecture and using large minibatch size vs small minibatch size. The notion of simplicity used here is that of learnability i.e., how accurately can the prediction function of a neural network be learned from labeled samples from it... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.