Learned Index with Dynamic $\epsilon$

29 Sep 2021  ·  Daoyuan Chen, Wuchao Li, Yaliang Li, Bolin Ding, Kai Zeng, Defu Lian, Jingren Zhou ·

Index structure is a fundamental component in database and facilitates broad data retrieval applications. Recent learned index methods show superior performance by learning hidden yet useful data distribution with the help of machine learning, and provide a guarantee that the prediction error is no more than a pre-defined $\epsilon$. However, existing learned index methods adopt a fixed $\epsilon$ for all the learned segments, neglecting the diverse characteristics of different data localities. In this paper, we propose a mathematically-grounded learned index framework with dynamic $\epsilon$, which is efficient and pluggable to existing learned index methods. We theoretically analyze prediction error bounds that link $\epsilon$ with data characteristics for an illustrative learned index method. Under the guidance of the derived bounds, we learn how to vary $\epsilon$ and improve the index performance with a better space-time trade-off. Experiments with real-world datasets and several state-of-the-art methods demonstrate the efficiency, effectiveness and usability of the proposed framework.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here