Learned Turbulence Modelling with Differentiable Fluid Solvers: Physics-based Loss-functions and Optimisation Horizons

14 Feb 2022  ·  Björn List, Li-Wei Chen, Nils Thuerey ·

In this paper, we train turbulence models based on convolutional neural networks. These learned turbulence models improve under-resolved low resolution solutions to the incompressible Navier-Stokes equations at simulation time. Our study involves the development of a differentiable numerical solver that supports the propagation of optimisation gradients through multiple solver steps. The significance of this property is demonstrated by the superior stability and accuracy of those models that unroll more solver steps during training. Furthermore, we introduce loss terms based on turbulence physics that further improve the model accuracy. This approach is applied to three two-dimensional turbulence flow scenarios, a homogeneous decaying turbulence case, a temporally evolving mixing layer, and a spatially evolving mixing layer. Our models achieve significant improvements of long-term a-posteriori statistics when compared to no-model simulations, without requiring these statistics to be directly included in the learning targets. At inference time, our proposed method also gains substantial performance improvements over similarly accurate, purely numerical methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here