Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks

21 Jun 2020  ·  Sujay Thakur, Cooper Lorsung, Yaniv Yacoby, Finale Doshi-Velez, Weiwei Pan ·

Neural Linear Models (NLM) are deep Bayesian models that produce predictive uncertainties by learning features from the data and then performing Bayesian linear regression over these features. Despite their popularity, few works have focused on methodically evaluating the predictive uncertainties of these models. In this work, we demonstrate that traditional training procedures for NLMs drastically underestimate uncertainty on out-of-distribution inputs, and that they therefore cannot be naively deployed in risk-sensitive applications. We identify the underlying reasons for this behavior and propose a novel training framework that captures useful predictive uncertainties for downstream tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods