Learning 3D Photography Videos via Self-supervised Diffusion on Single Images

3D photography renders a static image into a video with appealing 3D visual effects. Existing approaches typically first conduct monocular depth estimation, then render the input frame to subsequent frames with various viewpoints, and finally use an inpainting model to fill those missing/occluded regions. The inpainting model plays a crucial role in rendering quality, but it is normally trained on out-of-domain data. To reduce the training and inference gap, we propose a novel self-supervised diffusion model as the inpainting module. Given a single input image, we automatically construct a training pair of the masked occluded image and the ground-truth image with random cycle-rendering. The constructed training samples are closely aligned to the testing instances, without the need of data annotation. To make full use of the masked images, we design a Masked Enhanced Block (MEB), which can be easily plugged into the UNet and enhance the semantic conditions. Towards real-world animation, we present a novel task: out-animation, which extends the space and time of input objects. Extensive experiments on real datasets show that our method achieves competitive results with existing SOTA methods.

PDF Abstract

Results from the Paper

Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Image Outpainting MSCOCO NUWA-3D FID 10.65 # 1
Inception score 38.61 # 1
CLIP Similarity 32.26 # 1