Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation

4 Jun 2018Jack KosaianK. V. RashmiShivaram Venkataraman

Machine learning algorithms are typically run on large scale, distributed compute infrastructure that routinely face a number of unavailabilities such as failures and temporary slowdowns. Adding redundant computations using coding-theoretic tools called "codes" is an emerging technique to alleviate the adverse effects of such unavailabilities... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet