Learning a High-quality Robotic Wiping Policy Using Systematic Reward Analysis and Visual-Language Model Based Curriculum

18 Feb 2025  ·  Yihong Liu, Dongyeop Kang, Sehoon Ha ·

Autonomous robotic wiping is an important task in various industries, ranging from industrial manufacturing to sanitization in healthcare. Deep reinforcement learning (Deep RL) has emerged as a promising algorithm, however, it often suffers from a high demand for repetitive reward engineering. Instead of relying on manual tuning, we first analyze the convergence of quality-critical robotic wiping, which requires both high-quality wiping and fast task completion, to show the poor convergence of the problem and propose a new bounded reward formulation to make the problem feasible. Then, we further improve the learning process by proposing a novel visual-language model (VLM) based curriculum, which actively monitors the progress and suggests hyperparameter tuning. We demonstrate that the combined method can find a desirable wiping policy on surfaces with various curvatures, frictions, and waypoints, which cannot be learned with the baseline formulation. The demo of this project can be found at: https://sites.google.com/view/highqualitywiping.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here