Learning a Non-Redundant Collection of Classifiers

1 Jan 2021  ·  Daniel Pace, Alessandra Russo, Murray Shanahan ·

Supervised learning models constructed under the i.i.d. assumption have often been shown to exploit spurious or brittle predictive signals instead of more robust ones present in the training data. Inspired by Quality-Diversity algorithms, in this work we train a collection of classifiers to learn distinct solutions to a classification problem, with the goal of learning to exploit a variety of predictive signals present in the training data. We propose an information-theoretic measure of model diversity based on minimizing an estimate of conditional total correlation of final layer representations across models given the label. We consider datasets with synthetically injected spurious correlations and evaluate our framework's ability to rapidly adapt to a change in distribution that destroys the spurious correlation. We compare our method to a variety of baselines under this evaluation protocol, showing that it is competitive with other approaches while being more successful at isolating distinct signals. We also show that our model is competitive with Invariant Risk Minimization under this evaluation protocol without requiring access to the environment information required by IRM to discriminate between spurious and robust signals.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here