Learning a Reinforced Agent for Flexible Exposure Bracketing Selection

CVPR 2020 Zhouxia WangJiawei ZhangMude LinJiong WangPing LuoJimmy Ren

Automatically selecting exposure bracketing (images exposed differently) is important to obtain a high dynamic range image by using multi-exposure fusion. Unlike previous methods that have many restrictions such as requiring camera response function, sensor noise model, and a stream of preview images with different exposures (not accessible in some scenarios e.g. some mobile applications), we propose a novel deep neural network to automatically select exposure bracketing, named EBSNet, which is sufficiently flexible without having the above restrictions... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet