Learning a Spatio-Temporal Embedding for Video Instance Segmentation

19 Dec 2019  ·  Anthony Hu, Alex Kendall, Roberto Cipolla ·

We present a novel embedding approach for video instance segmentation. Our method learns a spatio-temporal embedding integrating cues from appearance, motion, and geometry; a 3D causal convolutional network models motion, and a monocular self-supervised depth loss models geometry. In this embedding space, video-pixels of the same instance are clustered together while being separated from other instances, to naturally track instances over time without any complex post-processing. Our network runs in real-time as our architecture is entirely causal - we do not incorporate information from future frames, contrary to previous methods. We show that our model can accurately track and segment instances, even with occlusions and missed detections, advancing the state-of-the-art on the KITTI Multi-Object and Tracking Dataset.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here