Learning Actions from Human Demonstration Video for Robotic Manipulation

10 Sep 2019  ·  Shuo Yang, Wei zhang, Weizhi Lu, Hesheng Wang, Yibin Li ·

Learning actions from human demonstration is an emerging trend for designing intelligent robotic systems, which can be referred as video to command. The performance of such approach highly relies on the quality of video captioning. However, the general video captioning methods focus more on the understanding of the full frame, lacking of consideration on the specific object of interests in robotic manipulations. We propose a novel deep model to learn actions from human demonstration video for robotic manipulation. It consists of two deep networks, grasp detection network (GNet) and video captioning network (CNet). GNet performs two functions: providing grasp solutions and extracting the local features for the object of interests in robotic manipulation. CNet outputs the captioning results by fusing the features of both full frames and local objects. Experimental results on UR5 robotic arm show that our method could produce more accurate command from video demonstration than state-of-the-art work, thereby leading to more robust grasping performance.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here