Learning Agent Representations for Ice Hockey

Team sports is a new application domain for agent modeling with high real-world impact. A fundamental challenge for modeling professional players is their large number (over 1K), which includes many bench players with sparse participation in a game season. The diversity and sparsity of player observations make it difficult to extend previous agent representation models to the sports domain. This paper develops a new approach for agent representations, based on a Markov game model, that is tailored towards applications in professional ice hockey. We introduce a novel player representation via player generation framework where a variational encoder embeds player information with latent variables. The encoder learns a context-specific shared prior to induce a shrinkage effect for the posterior player representations, allowing it to share statistical information across players with different participations. To model the play dynamics in sequential sports data, we design a Variational Recurrent Ladder Agent Encoder (VaRLAE). It learns a contextualized player representation with a hierarchy of latent variables that effectively prevents latent posterior collapse. We validate our player representations in major sports analytics tasks. Our experimental results, based on a large dataset that contains over 4.5M events, show state-of-the-art performance for our VarLAE on facilitating 1) identifying the acting player, 2) estimating expected goals, and 3) predicting the final score difference.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here