Learning agents with prioritization and parameter noise in continuous state and action space

ICLR 2019 Rajesh DevaraddiG. Srinivasaraghavan

Reinforcement Learning (RL) problem can be solved in two different ways - the Value function-based approach and the policy optimization-based approach - to eventually arrive at an optimal policy for the given environment. One of the recent breakthroughs in reinforcement learning is the use of deep neural networks as function approximators to approximate the value function or q-function in a reinforcement learning scheme... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper