Learning Algebraic Representation for Abstract Spatial-Temporal Reasoning

1 Jan 2021  ·  Chi Zhang, Sirui Xie, Baoxiong Jia, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu ·

Is intelligence realized by connectionist or classicist? While connectionist approaches have achieved superhuman performance, there has been growing evidence that such task-specific superiority is particularly fragile in systematic generalization. This observation lies in the central debate (Fodor et al., 1988; Fodor &McLaughlin, 1990) between connectionist and classicist, wherein the latter continually advocates an algebraic treatment in cognitive architectures. In this work, we follow the classicist's call and propose a hybrid approach to improve systematic generalization in reasoning. Specifically, we showcase a prototype with algebraic representations for the abstract spatial-temporal reasoning task of Raven’s Progressive Matrices (RPM) and present the ALgebra-Aware Neuro-Semi-Symbolic (ALANS$^2$) learner. The ALANS$^2$ learner is motivated by abstract algebra and the representation theory. It consists of a neural visual perception frontend and an algebraic abstract reasoning backend: the frontend summarizes the visual information from object-based representations, while the backend transforms it into an algebraic structure and induces the hidden operator on-the-fly. The induced operator is later executed to predict the answer's representation, and the choice most similar to the prediction is selected as the solution. Extensive experiments show that by incorporating an algebraic treatment, the ALANS$^2$ learner outperforms various pure connectionist models in domains requiring systematic generalization. We further show that the algebraic representation learned can be decoded by isomorphism and used to generate an answer.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here