Learning and Refining of Privileged Information-based RNNs for Action Recognition from Depth Sequences

Existing RNN-based approaches for action recognition from depth sequences require either skeleton joints or hand-crafted depth features as inputs. An end-to-end manner, mapping from raw depth maps to action classes, is non-trivial to design due to the fact that: 1) single channel map lacks texture thus weakens the discriminative power; 2) relatively small set of depth training data... (read more)

PDF Abstract CVPR 2017 PDF CVPR 2017 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet