Learning and Testing Causal Models with Interventions

We consider testing and learning problems on causal Bayesian networks as defined by Pearl (Pearl, 2009). Given a causal Bayesian network $\mathcal{M}$ on a graph with $n$ discrete variables and bounded in-degree and bounded `confounded components', we show that $O(\log n)$ interventions on an unknown causal Bayesian network $\mathcal{X}$ on the same graph, and $\tilde{O}(n/\epsilon^2)$ samples per intervention, suffice to efficiently distinguish whether $\mathcal{X}=\mathcal{M}$ or whether there exists some intervention under which $\mathcal{X}$ and $\mathcal{M}$ are farther than $\epsilon$ in total variation distance. We also obtain sample/time/intervention efficient algorithms for: (i) testing the identity of two unknown causal Bayesian networks on the same graph; and (ii) learning a causal Bayesian network on a given graph. Although our algorithms are non-adaptive, we show that adaptivity does not help in general: $\Omega(\log n)$ interventions are necessary for testing the identity of two unknown causal Bayesian networks on the same graph, even adaptively. Our algorithms are enabled by a new subadditivity inequality for the squared Hellinger distance between two causal Bayesian networks.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here