Constrained Deep Reinforcement Learning for Fronthaul Compression Optimization

26 Sep 2023  ·  Axel Grönland, Alessio Russo, Yassir Jedra, Bleron Klaiqi, Xavier Gelabert ·

In the Centralized-Radio Access Network (C-RAN) architecture, functions can be placed in the central or distributed locations. This architecture can offer higher capacity and cost savings but also puts strict requirements on the fronthaul (FH). Adaptive FH compression schemes that adapt the compression amount to varying FH traffic are promising approaches to deal with stringent FH requirements. In this work, we design such a compression scheme using a model-free off policy deep reinforcement learning algorithm which accounts for FH latency and packet loss constraints. Furthermore, this algorithm is designed for model transparency and interpretability which is crucial for AI trustworthiness in performance critical domains. We show that our algorithm can successfully choose an appropriate compression scheme while satisfying the constraints and exhibits a roughly 70\% increase in FH utilization compared to a reference scheme.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here