Learning-Based Single-Document Summarization with Compression and Anaphoricity Constraints

We present a discriminative model for single-document summarization that integrally combines compression and anaphoricity constraints. Our model selects textual units to include in the summary based on a rich set of sparse features whose weights are learned on a large corpus. We allow for the deletion of content within a sentence when that deletion is licensed by compression rules; in our framework, these are implemented as dependencies between subsentential units of text. Anaphoricity constraints then improve cross-sentence coherence by guaranteeing that, for each pronoun included in the summary, the pronoun's antecedent is included as well or the pronoun is rewritten as a full mention. When trained end-to-end, our final system outperforms prior work on both ROUGE as well as on human judgments of linguistic quality.

PDF Abstract ACL 2016 PDF ACL 2016 Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here