Learning Bounds for Importance Weighting

This paper presents an analysis of importance weighting for learning from finite samples and gives a series of theoretical and algorithmic results. We point out simple cases where importance weighting can fail, which suggests the need for an analysis of the properties of this technique. We then give both upper and lower bounds for generalization with bounded importance weights and, more significantly, give learning guarantees for the more common case of unbounded importance weights under the weak assumption that the second moment is bounded, a condition related to the Renyi divergence of the training and test distributions. These results are based on a series of novel and general bounds we derive for unbounded loss functions, which are of independent interest. We use these bounds to guide the definition of an alternative reweighting algorithm and report the results of experiments demonstrating its benefits. Finally, we analyze the properties of normalized importance weights which are also commonly used.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here