Learning Bounds for Importance Weighting

This paper presents an analysis of importance weighting for learning from finite samples and gives a series of theoretical and algorithmic results. We point out simple cases where importance weighting can fail, which suggests the need for an analysis of the properties of this technique... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet