Learning Compound Tasks without Task-specific Knowledge via Imitation and Self-supervised Learning

ICML 2020  ·  Sang-Hyun Lee, Seung-Woo Seo ·

Most real-world tasks are compound tasks that consist of multiple simpler sub-tasks. The main challenge of learning compound tasks is that we have no explicit supervision to learn the hierarchical structure of compound tasks. To address this challenge, previous imitation learning methods exploit task-specific knowledge, e.g., labeling demonstrations manually or specifying termination conditions for each sub-task. However, the need for task-specific knowledge makes it difficult to scale imitation learning to real-world tasks. In this paper, we propose an imitation learning method that can learn compound tasks without task-specific knowledge. The key idea behind our method is to leverage a self-supervised learning framework to learn the hierarchical structure of compound tasks. Our work also proposes a task-agnostic regularization technique to prevent unstable switching between sub-tasks, which has been a common degenerate case in previous works. We evaluate our method against several baselines on compound tasks. The results show that our method achieves state-of-the-art performance on compound tasks, outperforming prior imitation learning methods.

PDF ICML 2020 PDF

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here