Learning Context-aware Classifier for Semantic Segmentation

21 Mar 2023  ·  Zhuotao Tian, Jiequan Cui, Li Jiang, Xiaojuan Qi, Xin Lai, Yixin Chen, Shu Liu, Jiaya Jia ·

Semantic segmentation is still a challenging task for parsing diverse contexts in different scenes, thus the fixed classifier might not be able to well address varying feature distributions during testing. Different from the mainstream literature where the efficacy of strong backbones and effective decoder heads has been well studied, in this paper, additional contextual hints are instead exploited via learning a context-aware classifier whose content is data-conditioned, decently adapting to different latent distributions. Since only the classifier is dynamically altered, our method is model-agnostic and can be easily applied to generic segmentation models. Notably, with only negligible additional parameters and +2\% inference time, decent performance gain has been achieved on both small and large models with challenging benchmarks, manifesting substantial practical merits brought by our simple yet effective method. The implementation is available at \url{https://github.com/tianzhuotao/CAC}.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here