Learning Convolutional Feature Hierarchies for Visual Recognition

We propose an unsupervised method for learning multi-stage hierarchies of sparse convolutional features. While sparse coding has become an increasingly popular method for learning visual features, it is most often trained at the patch level... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet