Learning Cost-Effective and Interpretable Regimes for Treatment Recommendation

23 Nov 2016  ·  Himabindu Lakkaraju, Cynthia Rudin ·

Decision makers, such as doctors and judges, make crucial decisions such as recommending treatments to patients, and granting bails to defendants on a daily basis. Such decisions typically involve weighting the potential benefits of taking an action against the costs involved. In this work, we aim to automate this task of learning {cost-effective, interpretable and actionable treatment regimes. We formulate this as a problem of learning a decision list -- a sequence of if-then-else rules -- which maps characteristics of subjects (eg., diagnostic test results of patients) to treatments. We propose a novel objective to construct a decision list which maximizes outcomes for the population, and minimizes overall costs. We model the problem of learning such a list as a Markov Decision Process (MDP) and employ a variant of the Upper Confidence Bound for Trees (UCT) strategy which leverages customized checks for pruning the search space effectively. Experimental results on real world observational data capturing treatment recommendations for asthma patients demonstrate the effectiveness of our approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here