Learning Curves for Deep Neural Networks: A field theory perspective

25 Sep 2019  ·  Omry Cohen, Or Malka, Zohar Ringel ·

A series of recent works established a rigorous correspondence between very wide deep neural networks (DNNs), trained in a particular manner, and noiseless Bayesian Inference with a certain Gaussian Process (GP) known as the Neural Tangent Kernel (NTK). Here we extend a known field-theory formalism for GP inference to get a detailed understanding of learning-curves in DNNs trained in the regime of this correspondence (NTK regime). In particular, a renormalization-group approach is used to show that noiseless GP inference using NTK, which lacks a good analytical handle, can be well approximated by noisy GP inference on a related kernel we call the renormalized NTK. Following this, a perturbation-theory analysis is carried in one over the dataset-size yielding analytical expressions for the (fixed-teacher/fixed-target) leading and sub-leading asymptotics of the learning curves. At least for uniform datasets, a coherent picture emerges wherein fully-connected DNNs have a strong implicit bias towards functions which are low order polynomials of the input.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods