Learning distributed representations of graphs with Geo2DR

12 Mar 2020  ·  Paul Scherer, Pietro Lio ·

We present Geo2DR (Geometric to Distributed Representations), a GPU ready Python library for unsupervised learning on graph-structured data using discrete substructure patterns and neural language models. It contains efficient implementations of popular graph decomposition algorithms and neural language models in PyTorch which can be combined to learn representations of graphs using the distributive hypothesis. Furthermore, Geo2DR comes with general data processing and loading methods to bring substantial speed-up in the training of the neural language models. Through this we provide a modular set of tools and methods to quickly construct systems capable of learning distributed representations of graphs. This is useful for replication of existing methods, modification, or development of completely new methods. This paper serves to present the Geo2DR library and perform a comprehensive comparative analysis of existing methods re-implemented using Geo2DR across widely used graph classification benchmarks. Geo2DR displays a high reproducibility of results in published methods and interoperability with other libraries useful for distributive language modelling.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here