Learning-Driven Exploration for Reinforcement Learning

17 Jun 2019  ·  Muhammad Usama, Dong Eui Chang ·

Effective and intelligent exploration has been an unresolved problem for reinforcement learning. Most contemporary reinforcement learning relies on simple heuristic strategies such as $\epsilon$-greedy exploration or adding Gaussian noise to actions. These heuristics, however, are unable to intelligently distinguish the well explored and the unexplored regions of state space, which can lead to inefficient use of training time. We introduce entropy-based exploration (EBE) that enables an agent to explore efficiently the unexplored regions of state space. EBE quantifies the agent's learning in a state using merely state-dependent action values and adaptively explores the state space, i.e. more exploration for the unexplored region of the state space. We perform experiments on a diverse set of environments and demonstrate that EBE enables efficient exploration that ultimately results in faster learning without having to tune any hyperparameter. The code to reproduce the experiments is given at \url{https://github.com/Usama1002/EBE-Exploration} and the supplementary video is given at \url{https://youtu.be/nJggIjjzKic}.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here