Learning Dynamics from Noisy Measurements using Deep Learning with a Runge-Kutta Constraint

Measurement noise is an integral part while collecting data of a physical process. Thus, noise removal is a necessary step to draw conclusions from these data, and it often becomes quite essential to construct dynamical models using these data. We discuss a methodology to learn differential equation(s) using noisy and sparsely sampled measurements. In our methodology, the main innovation can be seen in of integration of deep neural networks with a classical numerical integration method. Precisely, we aim at learning a neural network that implicitly represents the data and an additional neural network that models the vector fields of the dependent variables. We combine these two networks by enforcing the constraint that the data at the next time-steps can be given by following a numerical integration scheme such as the fourth-order Runge-Kutta scheme. The proposed framework to learn a model predicting the vector field is highly effective under noisy measurements. The approach can handle scenarios where dependent variables are not available at the same temporal grid. We demonstrate the effectiveness of the proposed method to learning models using data obtained from various differential equations. The proposed approach provides a promising methodology to learn dynamic models, where the first-principle understanding remains opaque.

PDF Abstract NeurIPS Workshop 2021 PDF NeurIPS Workshop 2021 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here