Learning Effective Loss Functions Efficiently

28 Jun 2019Matthew Streeter

We consider the problem of learning a loss function which, when minimized over a training dataset, yields a model that approximately minimizes a validation error metric. Though learning an optimal loss function is NP-hard, we present an anytime algorithm that is asymptotically optimal in the worst case, and is provably efficient in an idealized "easy" case... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet