Learning Entangled Single-Sample Distributions via Iterative Trimming

20 Apr 2020  ·  Hui Yuan, YIngyu Liang ·

In the setting of entangled single-sample distributions, the goal is to estimate some common parameter shared by a family of distributions, given one \emph{single} sample from each distribution. We study mean estimation and linear regression under general conditions, and analyze a simple and computationally efficient method based on iteratively trimming samples and re-estimating the parameter on the trimmed sample set. We show that the method in logarithmic iterations outputs an estimation whose error only depends on the noise level of the $\lceil \alpha n \rceil$-th noisiest data point where $\alpha$ is a constant and $n$ is the sample size. This means it can tolerate a constant fraction of high-noise points. These are the first such results for the method under our general conditions. It also justifies the wide application and empirical success of iterative trimming in practice. Our theoretical results are complemented by experiments on synthetic data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods