Learning event representation: As sparse as possible, but not sparser

2 Oct 2017  ·  Tuan Do, James Pustejovsky ·

Selecting an optimal event representation is essential for event classification in real world contexts. In this paper, we investigate the application of qualitative spatial reasoning (QSR) frameworks for classification of human-object interaction in three dimensional space, in comparison with the use of quantitative feature extraction approaches for the same purpose. In particular, we modify QSRLib, a library that allows computation of Qualitative Spatial Relations and Calculi, and employ it for feature extraction, before inputting features into our neural network models. Using an experimental setup involving motion captures of human-object interaction as three dimensional inputs, we observe that the use of qualitative spatial features significantly improves the performance of our machine learning algorithm against our baseline, while quantitative features of similar kinds fail to deliver similar improvement. We also observe that sequential representations of QSR features yield the best classification performance. A result of our learning method is a simple approach to the qualitative representation of 3D activities as compositions of 2D actions that can be visualized and learned using 2-dimensional QSR.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here