Learning Fast Sparsifying Transforms

24 Nov 2016Cristian RusuJohn Thompson

Given a dataset, the task of learning a transform that allows sparse representations of the data bears the name of dictionary learning. In many applications, these learned dictionaries represent the data much better than the static well-known transforms (Fourier, Hadamard etc.)... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet