Uniform Inference on High-dimensional Spatial Panel Networks

16 May 2021  ·  Victor Chernozhukov, Chen Huang, Weining Wang ·

We propose employing a debiased-regularized, high-dimensional generalized method of moments (GMM) framework to perform inference on large-scale spatial panel networks. In particular, network structure with a flexible sparse deviation, which can be regarded either as latent or as misspecified from a predetermined adjacency matrix, is estimated using debiased machine learning approach. The theoretical analysis establishes the consistency and asymptotic normality of our proposed estimator, taking into account general temporal and spatial dependency inherent in the data-generating processes. The dimensionality allowance in presence of dependency is discussed. A primary contribution of our study is the development of uniform inference theory that enables hypothesis testing on the parameters of interest, including zero or non-zero elements in the network structure. Additionally, the asymptotic properties for the estimator are derived for both linear and nonlinear moments. Simulations demonstrate superior performance of our proposed approach. Lastly, we apply our methodology to investigate the spatial network effect of stock returns.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here