Learning from Group Comparisons: Exploiting Higher Order Interactions

NeurIPS 2018 Yao LiMinhao ChengKevin FujiiFushing HsiehCho-Jui Hsieh

We study the problem of learning from group comparisons, with applications in predicting outcomes of sports and online games. Most of the previous works in this area focus on learning individual effects---they assume each player has an underlying score, and the ''ability'' of the team is modeled by the sum of team members' scores... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet