Weakly supervised learning has drawn considerable attention recently to reduce the expensive time and labor consumption of labeling massive data. In this paper, we investigate a novel weakly supervised learning problem of learning from similarity-confidence (Sconf) data, where we aim to learn an effective binary classifier from only unlabeled data pairs equipped with confidence that illustrates their degree of similarity (two examples are similar if they belong to the same class)... (read more)
PDF AbstractMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |