Learning Graph While Training: An Evolving Graph Convolutional Neural Network

10 Aug 2017  ·  Ruoyu Li, Junzhou Huang ·

Convolution Neural Networks on Graphs are important generalization and extension of classical CNNs. While previous works generally assumed that the graph structures of samples are regular with unified dimensions, in many applications, they are highly diverse or even not well defined. Under some circumstances, e.g. chemical molecular data, clustering or coarsening for simplifying the graphs is hard to be justified chemically. In this paper, we propose a more general and flexible graph convolution network (EGCN) fed by batch of arbitrarily shaped data together with their evolving graph Laplacians trained in supervised fashion. Extensive experiments have been conducted to demonstrate the superior performance in terms of both the acceleration of parameter fitting and the significantly improved prediction accuracy on multiple graph-structured datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods