Learning Higher-Order Graph Structure with Features by Structure Penalty

NeurIPS 2011 Shilin DingGrace WahbaJerry Zhu

In discrete undirected graphical models, the conditional independence of node labels Y is specified by the graph structure. We study the case where there is another input random vector X (e.g. observed features) such that the distribution P (Y | X) is determined by functions of X that characterize the (higher-order) interactions among the Y ’s... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet