Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity

NeurIPS 2017  ·  Asish Ghoshal, Jean Honorio ·

Learning the directed acyclic graph (DAG) structure of a Bayesian network from observational data is a notoriously difficult problem for which many hardness results are known. In this paper we propose a provably polynomial-time algorithm for learning sparse Gaussian Bayesian networks with equal noise variance --- a class of Bayesian networks for which the DAG structure can be uniquely identified from observational data --- under high-dimensional settings. We show that $O(k^4 \log p)$ number of samples suffices for our method to recover the true DAG structure with high probability, where $p$ is the number of variables and $k$ is the maximum Markov blanket size. We obtain our theoretical guarantees under a condition called Restricted Strong Adjacency Faithfulness, which is strictly weaker than strong faithfulness --- a condition that other methods based on conditional independence testing need for their success. The sample complexity of our method matches the information-theoretic limits in terms of the dependence on $p$. We show that our method out-performs existing state-of-the-art methods for learning Gaussian Bayesian networks in terms of recovering the true DAG structure while being comparable in speed to heuristic methods.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods