Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint

NeurIPS 2011 Kenji FukumizuGert R. LanckrietBharath K. Sriperumbudur

The goal of this paper is to investigate the advantages and disadvantages of learning in Banach spaces over Hilbert spaces. While many works have been carried out in generalizing Hilbert methods to Banach spaces, in this paper, we consider the simple problem of learning a Parzen window classifier in a reproducing kernel Banach space (RKBS)---which is closely related to the notion of embedding probability measures into an RKBS---in order to carefully understand its pros and cons over the Hilbert space classifier... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet