Learning In Practice: Reasoning About Quantization

27 May 2019  ·  Annie Cherkaev, Waiming Tai, Jeff Phillips, Vivek Srikumar ·

There is a mismatch between the standard theoretical analyses of statistical machine learning and how learning is used in practice. The foundational assumption supporting the theory is that we can represent features and models using real-valued parameters. In practice, however, we do not use real numbers at any point during training or deployment. Instead, we rely on discrete and finite quantizations of the reals, typically floating points. In this paper, we propose a framework for reasoning about learning under arbitrary quantizations. Using this formalization, we prove the convergence of quantization-aware versions of the Perceptron and Frank-Wolfe algorithms. Finally, we report the results of an extensive empirical study of the impact of quantization using a broad spectrum of datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here