Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span

19 Oct 2024  ·  Woojin Chae, Kihyuk Hong, Yufan Zhang, Ambuj Tewari, Dabeen Lee ·

This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear mixture Markov decision processes (MDPs) under the Bellman optimality condition. Our algorithm for linear mixture MDPs achieves a nearly minimax optimal regret upper bound of $\widetilde{\mathcal{O}}(d\sqrt{\mathrm{sp}(v^*)T})$ over $T$ time steps where $\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$ is the dimension of the feature mapping. Our algorithm applies the recently developed technique of running value iteration on a discounted-reward MDP approximation with clipping by the span. We prove that the value iteration procedure, even with the clipping operation, converges. Moreover, we show that the associated variance term due to random transitions can be bounded even under clipping. Combined with the weighted ridge regression-based parameter estimation scheme, this leads to the nearly minimax optimal regret guarantee.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here