Learning Invariant Representation with Consistency and Diversity for Semi-supervised Source Hypothesis Transfer

7 Jul 2021  ·  Xiaodong Wang, Junbao Zhuo, Shuhao Cui, Shuhui Wang ·

Semi-supervised domain adaptation (SSDA) aims to solve tasks in target domain by utilizing transferable information learned from the available source domain and a few labeled target data. However, source data is not always accessible in practical scenarios, which restricts the application of SSDA in real world circumstances. In this paper, we propose a novel task named Semi-supervised Source Hypothesis Transfer (SSHT), which performs domain adaptation based on source trained model, to generalize well in target domain with a few supervisions. In SSHT, we are facing two challenges: (1) The insufficient labeled target data may result in target features near the decision boundary, with the increased risk of mis-classification; (2) The data are usually imbalanced in source domain, so the model trained with these data is biased. The biased model is prone to categorize samples of minority categories into majority ones, resulting in low prediction diversity. To tackle the above issues, we propose Consistency and Diversity Learning (CDL), a simple but effective framework for SSHT by facilitating prediction consistency between two randomly augmented unlabeled data and maintaining the prediction diversity when adapting model to target domain. Encouraging consistency regularization brings difficulty to memorize the few labeled target data and thus enhances the generalization ability of the learned model. We further integrate Batch Nuclear-norm Maximization into our method to enhance the discriminability and diversity. Experimental results show that our method outperforms existing SSDA methods and unsupervised model adaptation methods on DomainNet, Office-Home and Office-31 datasets. The code is available at https://github.com/Wang-xd1899/SSHT.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods