Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

29 Mar 2017Junyu LuoYong XuChenwei TangJiancheng Lv

The inverse mapping of GANs'(Generative Adversarial Nets) generator has a great potential value.Hence, some works have been developed to construct the inverse function of generator by directly learning or adversarial learning.While the results are encouraging, the problem is highly challenging and the existing ways of training inverse models of GANs have many disadvantages, such as hard to train or poor performance.Due to these reasons, we propose a new approach based on using inverse generator ($IG$) model as encoder and pre-trained generator ($G$) as decoder of an AutoEncoder network to train the $IG$ model. In the proposed model, the difference between the input and output, which are both the generated image of pre-trained GAN's generator, of AutoEncoder is directly minimized... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.