Learning Joint Feature Adaptation for Zero-Shot Recognition

23 Nov 2016 Ziming Zhang Venkatesh Saligrama

Zero-shot recognition (ZSR) aims to recognize target-domain data instances of unseen classes based on the models learned from associated pairs of seen-class source and target domain data. One of the key challenges in ZSR is the relative scarcity of source-domain features (e.g. one feature vector per class), which do not fully account for wide variability in target-domain instances... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet