Learning Linear Models Using Distributed Iterative Hessian Sketching

8 Dec 2021  ·  Han Wang, James Anderson ·

This work considers the problem of learning the Markov parameters of a linear system from observed data. Recent non-asymptotic system identification results have characterized the sample complexity of this problem in the single and multi-rollout setting. In both instances, the number of samples required in order to obtain acceptable estimates can produce optimization problems with an intractably large number of decision variables for a second-order algorithm. We show that a randomized and distributed Newton algorithm based on Hessian-sketching can produce $\epsilon$-optimal solutions and converges geometrically. Moreover, the algorithm is trivially parallelizable. Our results hold for a variety of sketching matrices and we illustrate the theory with numerical examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here