Learning Local Distortion Visibility From Image Quality Data-sets

11 Mar 2018  ·  Navaneeth Kamballur Kottayil, Giuseppe Valenzise, Frederic Dufaux, Irene Cheng ·

Accurate prediction of local distortion visibility thresholds is critical in many image and video processing applications. Existing methods require an accurate modeling of the human visual system, and are derived through pshycophysical experiments with simple, artificial stimuli. These approaches, however, are difficult to generalize to natural images with complex types of distortion. In this paper, we explore a different perspective, and we investigate whether it is possible to learn local distortion visibility from image quality scores. We propose a convolutional neural network based optimization framework to infer local detection thresholds in a distorted image. Our model is trained on multiple quality datasets, and the results are correlated with empirical visibility thresholds collected on complex stimuli in a recent study. Our results are comparable to state-of-the-art mathematical models that were trained on phsycovisual data directly. This suggests that it is possible to predict psychophysical phenomena from visibility information embedded in image quality scores.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here