Learning Low-Rank Approximation for CNNs

24 May 2019  ·  Dongsoo Lee, Se Jung Kwon, Byeongwook Kim, Gu-Yeon Wei ·

Low-rank approximation is an effective model compression technique to not only reduce parameter storage requirements, but to also reduce computations. For convolutional neural networks (CNNs), however, well-known low-rank approximation methods, such as Tucker or CP decomposition, result in degraded model accuracy because decomposed layers hinder training convergence. In this paper, we propose a new training technique that finds a flat minimum in the view of low-rank approximation without a decomposed structure during training. By preserving the original model structure, 2-dimensional low-rank approximation demanding lowering (such as im2col) is available in our proposed scheme. We show that CNN models can be compressed by low-rank approximation with much higher compression ratio than conventional training methods while maintaining or even enhancing model accuracy. We also discuss various 2-dimensional low-rank approximation techniques for CNNs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods