Paper

Learning Low-Rank Approximation for CNNs

Low-rank approximation is an effective model compression technique to not only reduce parameter storage requirements, but to also reduce computations. For convolutional neural networks (CNNs), however, well-known low-rank approximation methods, such as Tucker or CP decomposition, result in degraded model accuracy because decomposed layers hinder training convergence. In this paper, we propose a new training technique that finds a flat minimum in the view of low-rank approximation without a decomposed structure during training. By preserving the original model structure, 2-dimensional low-rank approximation demanding lowering (such as im2col) is available in our proposed scheme. We show that CNN models can be compressed by low-rank approximation with much higher compression ratio than conventional training methods while maintaining or even enhancing model accuracy. We also discuss various 2-dimensional low-rank approximation techniques for CNNs.

Results in Papers With Code
(↓ scroll down to see all results)