Learning Multi-Agent Coordination for Enhancing Target Coverage in Directional Sensor Networks

NeurIPS 2020  ·  Jing Xu, Fangwei Zhong, Yizhou Wang ·

Maximum target coverage by adjusting the orientation of distributed sensors is an important problem in directional sensor networks (DSNs). This problem is challenging as the targets usually move randomly but the coverage range of sensors is limited in angle and distance... Thus, it is required to coordinate sensors to get ideal target coverage with low power consumption, e.g. no missing targets or reducing redundant coverage. To realize this, we propose a Hierarchical Target-oriented Multi-Agent Coordination (HiT-MAC), which decomposes the target coverage problem into two-level tasks: targets assignment by a coordinator and tracking assigned targets by executors. Specifically, the coordinator periodically monitors the environment globally and allocates targets to each executor. In turn, the executor only needs to track its assigned targets. To effectively learn the HiT-MAC by reinforcement learning, we further introduce a bunch of practical methods, including a self-attention module, marginal contribution approximation for the coordinator, goal-conditional observation filter for the executor, etc. Empirical results demonstrate the advantage of HiT-MAC in coverage rate, learning efficiency,and scalability, comparing to baselines. We also conduct an ablative analysis on the effectiveness of the introduced components in the framework. read more

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here