Learning Multiple Adverse Weather Removal via Two-Stage Knowledge Learning and Multi-Contrastive Regularization: Toward a Unified Model

In this paper, an ill-posed problem of multiple adverse weather removal is investigated. Our goal is to train a model with a 'unified' architecture and only one set of pretrained weights that can tackle multiple types of adverse weathers such as haze, snow, and rain simultaneously. To this end, a two-stage knowledge learning mechanism including knowledge collation (KC) and knowledge examination (KE) based on a multi-teacher and student architecture is proposed. At the KC, the student network aims to learn the comprehensive bad weather removal problem from multiple well-trained teacher networks where each of them is specialized in a specific bad weather removal problem. To accomplish this process, a novel collaborative knowledge transfer is proposed. At the KE, the student model is trained without the teacher networks and examined by challenging pixel loss derived by the ground truth. Moreover, to improve the performance of our training framework, a novel loss function called multi-contrastive knowledge regularization (MCR) loss is proposed. Experiments on several datasets show that our student model can achieve promising performance on different bad weather removal tasks simultaneously.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here